CSCCO09 Week 11-12 Notes

Users respond to speed:
- Amazon found every 100ms of latency cost them 1% in sales.

- Google found an extra .5 seconds in search page generation time dropped traffic by
20%.
Problems to consider:
- How to increase the throughput?
Throughput refers to how much data can be transferred from one location to another in a
given amount of time. It is used to measure the performance of hard drives and RAM, as
well as Internet and network connections.
- How to scale to serve millions of users?
Solutions:

Solutions v Web Packing

=
$;—En

e 4 J
v
Backend :-—-
v HTTP/2 Server -
v HTTP3 | g

- Processing the request means:
1. Parsing the HTTP request.
2. Mapping the URL to the handler.
3. Querying the database or third-party API.
4. Computing the HTTP response.
Of all these tasks, step 3 is the most expensive. DB and API accesses are expensive
both in terms of time and money.

- Caching:

- In computing, a cache is a high-speed data storage layer which stores a subset of data,
typically transient in nature, so that future requests for that data are served up faster
than is possible by accessing the data’s primary storage location. Caching allows you to
efficiently reuse previously retrieved or computed data.

- The datain a cache is generally stored in fast access hardware such as RAM and may
also be used in correlation with a software component. A cache's primary purpose is to
increase data retrieval performance by reducing the need to access the underlying
slower storage layer.

- Instead of making the same queries to the database multiple times, we can store the
information in cache to make it faster to retrieve in the future.

- le.

33\
$— e

"

CSCCO09 Week 11-12 Notes

The cache is controlled by the program and is specific for each app.
We can cache database requests and session information.
A popular memory cache is memcached.
Memcached is a distributed shared cache.
Memcached stores key/value pairs in memory and throws away data that is the least
recently used.
A typical cache algorithm:
retrieve from cache
if data not in cache:

cache miss

query the database or API

update the cache
return result
Cache stampede/dog piling is a problem that occurs when multiple concurrent
requests are doing the same request because cache was cleared. A cache stampede
occurs when several threads attempt to access a cache in parallel. If the cached value
doesn’t exist, the threads will then attempt to fetch the data from the database at the
same time. Due to the sudden spike in CPU usage, the database will crash.
E.g.
Imagine you are doing an expensive SQL query that takes 3 seconds to complete and
spikes CPU usage of your database server. You want to cache that query as running
multiple of those in parallel can cause database performance problems and could bring
your entire app down. Let's say you have a traffic of 100 requests a second. With our
3-second query example, if you get 100 requests in one second and your cache is cold,
you'll end up with 300 processes all running the same uncached query.
A solution is cache warming. Cache warming is when websites artificially fill the cache
so that real visitors will always get a cache hit. Essentially, sites that engage in cache
warming are preparing the cache for visitors, rather than allowing the first visitor to get a
cache miss. This ensures every visitor has the same experience.
Warm cache maintains useful data that your system requires. It helps you achieve faster
processing. It will be time-consuming if for each request the process has to query a DB
to get this information. so it would be a good idea to cache it; and that would be feasible
through warm cache. This cache should be maintained regularly otherwise your cache
may grow in size with unnecessary data and you might notice performance degradation.
l.e.
Update the cache instead of clearing it after an insert.
Furthermore, you warm the cache when you start the server.

CSCCO09 Week 11-12 Notes

Scaling The Backend:

Load Balancing:

We can use a load balancer to distribute the weight. A load balancer acts as the “traffic
cop” sitting in front of your servers and routing client requests across all servers capable
of fulfilling those requests in a manner that maximizes speed and capacity utilization and
ensures that no one server is overworked, which could degrade performance. If a single
server goes down, the load balancer redirects traffic to the remaining online servers.
When a new server is added to the server group, the load balancer automatically starts
to send requests to it.

Frontend s
> Server
3 \ Memcached

: }

.3 / Certificate
Manager

Backend

e

Memcached

This is not an efficient cache

This is a bad design because each memcached in each backend will contain the same
information. Your duplicating information over and over again.

Frontend il
g = i
.3 : :
— T S
A

I || T
A ! - - ,
S / Certificate

Manager I
. ()

Memcached is a distributed shared cache. This means that while there are many
memcached servers, in reality, we're dealing with a unified memcached.

Database Sharding:

Database sharding is the process of breaking up large tables into smaller chunks called
shards that are spread across multiple servers. The idea is to distribute data that can’t fit
on a single node onto a cluster of database nodes.

Frontend
3 - (=) -

{ g | =
«— & e e
3 — I I b - -
i (et 2]
3 / Certificate Sy
Manager I
L) -

CSCCO09 Week 11-12 Notes

Automatic Scaling with container Orchestration:

44
2 I Backend <=
W
N - SR
] G Memcached Memcached e Memcached
o)) aE)
Container Orchestrator
(like Kubernetes or Docker Swarm)
! & ! %/;’J [
C 9C 75
At certain times, our web application will have more users using it and at other times, our
web application will have few or no users using it. For example, for Amazon, its 2 busiest
days are Black Friday and Christmas. Furthermore, consider an Amazon-like website but
only for Canada. At night, it will have few people using it. We can use Kubernetes to

automatically scale our website based on the stress/load.
CDN (Content Distribution Network):

) o

P
b

A content delivery network (CDN) refers to a geographically distributed group of
servers which work together to provide fast delivery of Internet content.

A CDN allows for the quick transfer of assets needed for loading Internet content
including HTML pages, javascript files, stylesheets, images, and videos. The popularity
of CDN services continues to grow, and today the maijority of web traffic is served
through CDNs, including traffic from major sites like Facebook, Netflix, and Amazon.

A CDN is a highly-distributed platform of servers that helps to minimize delays in loading
web page content by reducing the physical distance between the server and the user.
This helps users around the world view the same high-quality content without slow
loading times.

Without a CDN, content origin servers must respond to every single end user request.
This results in significant traffic to the origin and subsequent load, thereby increasing the
chances for origin failure if the traffic spikes are exceedingly high or if the load is
persistent.

By responding to end user requests in place of the origin and in closer physical and
network proximity to the end user, a CDN offloads traffic from content servers and
improves the web experience, thus benefiting both the content provider and its end
users.

CSCCO09 Week 11-12 Notes

Frontend Packing:

If your frontend has a lot of HTML/JS/CSS files, loading the files will take a long time.

A solution is to use webpack.

Webpack’s mission is to take many different modules, files and assets and bundle them
together. It transfers their content into a single file or a smaller group of files. It also
manages all complexities regarding your dependencies, making sure that code is loaded
in the correct order.

HTTP Versions 2.0 and 3.0:

HTTP 2:
HTTP/2 enables multiplexing which means sending multiple HTTP responses for a given
request (aka push).

TRNRAIE
a i GET /
. - B
KN . Y
@
GET /js/bundle.js
[
200
GIRIRDI0
= A GET /
. L
EN . e <
200
=] HTML]
200 push

With HTTP 1.1, you had to make GET requests separately for the HTML, JS, and CSS
files. With HTTP 2.0, if a user makes a GET request for the HTML page, the JS and CSS
files are also sent back with the HTML file.

It was proposed by Google and was originally called SPDY.

It was adopted as a standard in 2015 (RFC 7540).

HTTP/2 is compatible with HTTP/1 (same protocols).

HTTP/3:

Is still a work in progress. However, Chrome is compatible with HTTP 3.

HTTP/3 is compatible with HTTP/2 and HTTP/1.

The main difference between HTTP/3 and HTTP/2 is that HTTP/3 uses the UDP protocol
instead of the TCP protocol. UDP is a lot faster than TCP.

E.g.

HTTP/I & 2

TCP handshake S¥nia

TLS ClientHello
ack
TLS ServerHello . HTTP{’I3

TLS handshake ack = . -

TLS handshake | [«ic

_'I_l':'

HTTF Reguest

k, —
= 1 TF HTTP Response

CP handshake PNen U e

CSCCO09 Week 11-12 Notes

Short Polling vs Long Polling:

Short Polling:

Short polling is a technique where the frontend requests an update from the backend
every few seconds and the backend replies right away regardless if there is an update or
not. In this case, many requests/responses are wasted.

l.e. Send a request to the server and get an instant answer. Do this every few seconds,
minutes, etc to keep your application up-to-date. But, this costs a lot of requests.

Twitter uses short polling.

Long Polling:

Long polling is a technique where the frontend requests an update from the backend
and waits for the response and the backend replies to the update request only when
there is an update. In this case, no requests/responses are wasted and updates are
processed as soon as they arrive.

l.e. Long polling is technique where the server elects to hold a client connection open for
as long as possible, delivering a response only after data becomes available or timeout
threshold has been reached. After receiving a response, the client immediately sends
the next request.

Facebook uses long polling.

WebSockets

A WebSocket is a persistent connection between a client and server. WebSockets
provide a bidirectional, full-duplex communications channel that operates over HTTP
through a single TCP/IP socket connection. Note: WebSockets do not rely on HTTP at
all except for initialization.

A full-duplex system allows communication in both directions to happen simultaneously.
E.g. Land-line telephone networks are full-duplex since they allow both callers to speak
and be heard at the same time.

WebSockets are similar to low-level POSIX sockets.

WebRTC (Web Real-Time Communications):

Itis a full-duplex communication between clients (browsers).

It provides peer-to-peer (P2P) communications, which is perfect for sending text, video,
audio without going through the server except for initialization and signalling that goes
through the server usually using WebSockets.

WebRTC has no signaling of its own and this is necessary in order to open a WebRTC
peer connection. WebRTC can achieve this by using other transport protocols such as
HTTPS or secure WebSockets.

l.e. To connect a WebRTC data channel you first need to signal the connection between
the two browsers. To do that, you need them to communicate through a web server in
some way. This is achieved by using a secure WebSocket or HTTPS.

The main difference between WebSockets and WebRTC is that WebSockets are meant
to enable bidirectional communication between a browser and a web server while
WebRTC is meant to offer real time communication between browsers.

Progresswe Web Applications (PWA):

PWAs are web applications that can be installed on your system.

It works offline when you don’t have an internet connection, leveraging data cached
during your last interactions with the app.

It relies on the browser’s local storage to store the frontend and checks for updates with
the server.

It relies on web-workers for caching and communication.

